

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty Supported by the CGIAR

Impact of Climate Change on Agricultural Systems and Adaptation Responses

Mark W. Rosegrant

Director

Environment and Production Technology Division

International Conference on Climate Change and Implications for Water Resources & Nutrition Security Bangalore, India November 15-16, 2013

Outline

- Drivers of Agricultural Growth and Food Security
- Scenario Modeling Methodology
- Climate Change Impacts
- Climate Change Adaptation Costs
- Conclusions and Policy Responses

Drivers of Agricultural Growth and Food Security

- Supply drivers
 - Climate change
 - Water and land scarcity
 - Investment in agricultural research
 - Science and technology policy
 - Discovery, development, delivery
 - Intellectual property rights, regulatory systems, extension

http://www.tribuneindia.com/2004/200 40721/har.jpg

http://fbae.org/2009/FBAE/website/ images/btcotton_rice.jpg

Drivers of Agricultural Growth and Food Security

Demand drivers

- Population growth: 9 billion people in 2050
- Urbanization: 2008 = 50% urban; 2050 = 78%
- Income growth
- Oil prices

www.ifpri.org

- Biofuels and bioenergy
- GHG mitigation and carbon sequestration

http://www.government.nl/dsc?c=getobject&s= obj&objectid=101492

Drivers of Agricultural Growth and Food Security

- Rapid income growth and urbanization effects on diets and patterns of agricultural production
 - Change in diets to convenience foods, fast foods
 - Increased consumption of fruits and vegetables
 - Higher food energy, more sugar, fats and oils
 - Rapid growth in meat consumption and demand for grains for feed
 - Half of growth in grain demand will be for livestock
 - Intense pressure on land and water (highly water-intensive diet)

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty

Supported by the CGIAR

Scenario Modeling Methodology

Climate Change Model Components

- GCM climate scenarios
 - Multiple GCM using IPCC SRES A1B scenario, downscaled temperature and rainfall
- SPAM
 - Spatial distribution of crops based on crop calendars, soil characteristics, climate of 20 most important crops
- DSSAT crop model
 - Biophysical crop response to temp and precipitation
- IMPACT
 - Global food supply demand model to 2050 with global hydrology and water simulation by river basin

DSSAT Crop Models

- Simulate plant growth and crop yield by variety dayby-day, in response to
 - Temperature
 - Precipitation
 - Soil characteristics
 - Applied nitrogen
 - CO₂ fertilization

www.ifpri.org

- DSSAT-based simulations at crop-specific locations (using local climate, soil and topographical attributes)
- Maize: 15,576 cells; Soybean: 9,930; Rice: 9,176;
 Wheat: 18,661

IMPACT Methodology

- Global, partial-equilibrium agricultural sector model with 46 agricultural commodities
- Links country or regional-level supply and demand through trade
- World food prices are determined annually at levels that clear international commodity markets
- Linked with a global hydrologic model to account for impacts of climate change on water resources
- Includes a Water Simulation model to account for water demand and availability for agriculture and other sectors
- Yield and area impacts from climate change incorporated through crop models for key crops (DSSAT)

Structure of IMPACT Model

IFPRI®

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty

Supported by the CGIAR

Climate Change Impacts

Rainfed Maize: Impact of climate change in 2050

(MIROC/A1B)

2000 old area lost
yield loss > 25% of 2000
yield loss 5-25%
yield change within 5%
yield gain 5-25%
yield gain > 25%
2050 new area gained

Overall production change in shown existing areas: -11.2%

Rainfed Maize: Impact of climate change in 2080

(MIROC/A1B)

2000 old area lost
yield loss > 25% of 2000
yield loss 5-25%
yield change within 5%
yield gain 5-25%
yield gain > 25%
2050 new area gained

Overall production change in shown existing areas: -37.3%

Irrigated Rice: Impact of Climate Change in 2050 (MIROC/A1B)

2000 old area lost
yield loss > 25% of 2000
yield loss 5–25%
yield change within 5%
yield gain 5–25%
yield gain > 25%
2050 new area gained
www.ifpri.org

Overall production change in shown existing areas: -10.5%

Irrigated Rice: Impact of Climate Change in 2080 (MIROC/A1B)

2000 old area lost
yield loss > 25% of 2000
yield loss 5–25%
yield change within 5%
yield gain 5–25%
yield gain > 25%
2050 new area gained

Overall production change in shown existing areas: -16.1 %

Rainfed Wheat: Impact of climate change in 2050

(MIROC/A1B)

Rainfed Wheat: Impact of climate change in 2080

(MIROC/A1B)

Impact on International Food Prices (2010=100)

Average of four GCM, A1B, A2, B1, B2 Scenarios

Impact on Calorie Consumption

Average of 4 GCM and 4 scenarios = 12 % decline in developing countries

Impact on Childhood Malnutrition

Average of 4 GCM and 4 scenarios = 10% increase in developing countries

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty Supported by the CGIAR

Climate Change Adaptation Costs Estimated in IMPACT Model

Our Definition of Agricultural Adaptation

- Agricultural investments that reduce child malnutrition with climate change to the level with no climate change
- What types of investments considered?
 - Agricultural research
 - Irrigation expansion and efficiency improvements
 - Rural roads

Adaptation Costs are Large

- Required additional *annual* expenditure: \$7.1-\$7.3 billion
- Regional level
 - Sub-Saharan Africa 40% of the total, mainly for rural roads
 - South Asia US\$1.5 billion, research and irrigation efficiency
 - Latin America and Caribbean US\$1.2 billion per year, research
 - East Asia and the Pacific \$1 billion per year, research and irrigation efficiency

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty Supported by the CGIAR

> Conclusions and Policy Responses

Conclusions

- Climate change will have negative impacts on agricultural production and food security in developing countries
- Agriculture is critical for
 - Employment
 - Economic development
 - Food security
- Significant new expenditures required to reduce the adverse impacts of climate change

Conclusions

- Good agricultural development policy is good adaptation policy
- Climate change is a threat multiplier: requires higher investment to reach development goals
- Sustainable agricultural growth in hands of farmers reduces poverty and facilitates climate change adaptation and mitigation
- Greater investment needed in climate-sensitive traits and protection against climate variability and extremes

Key Adaptation Policies and Investments

- Breed crops for biotic and abiotic stresses

 agricultural productivity growth key to future food security under climate change
- Enhance water control
- Implement knowledge, information and risksharing approaches to support flexible farmer adaptation
- Support open trading regimes to share climate risk
- Use market-based approaches to manage water and environmental services combined with
 secure property rights

Key Adaptation Policies and Investments

- Reduce perverse agricultural subsidies that encourage overuse of inputs and higher carbon emissions
- Improve definition and protection of land and water property rights
- Recognize carbon as a global externality and value carbon through carbon trade

http://wokai.typepad.com/.a/6a00e54f957b1888330 115704a4cca970b-500wi

Agricultural Productivity

- Increasing crop productivity: agricultural research, resource conserving management, and rural investment
 - Emphasis on crop and livestock breeding (including biotechnology) targeting abiotic and biotic stresses
 - Water harvesting, precision agriculture, minimum tillage, integrated soil fertility management, integrated pest management, reduction of post harvest losses
 - Rural infrastructure investment to improve access to markets, risk insurance, credit, inputs, mobile phone towers

